

Effects of biomass smoke from southern Africa on stratocumulus over southeast Atlantic Ocean

Zheng Lu¹, <u>Xiaohong Liu</u>¹, Zhibo Zhang^{2,3}, Chun Zhao⁴, Kerry Meyer⁵, Chamara Rajapakshe², Chenglai Wu^{1,6}, Zhifeng Yang², and Joyce E. Penner⁷

¹Department of Atmospheric Science, University of Wyoming. ²Physics Department, University of Maryland Baltimore County. ³Joint Center for Earth Systems Technology, University of Maryland Baltimore County.

⁴School of Earth and Space Sciences, University of Science and Technology of China.

⁵NASA Goddard Space Flight Center.

⁶International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences.

⁷Department of Climate and Space Sciences and Engineering, University of Michigan

Motivation

- Many previous studies
 - suggested that BB aerosol plumes well separated from underlying SC clouds ^{1,2}
 - focused on direct and semidirect effects of BB aerosols in this region ^{3,4}
- New evidences from NASA CATS satellite (and in-situ measurement) ⁵
 - higher probability of mixing between aerosol and cloud
 - suggesting potentially important aerosol microphysical effect

Model and Data

- WRF-Chem model V3.6.1
- Domain and spatial resolution: 6000 km (Δx=3 km, E-W) × 1800 km (Δy=3 km, S-N) × 42 (v)
- Period: August 1 September 30, 2014
- Three cases: P-case, C-case (only sea salt and DMS-generated aerosols), and M-case (radiative effect of smoke not considered)
- Aerosol-cloud-radiation interactions in WRF-Chem
 - MOSAIC aerosol scheme; Abdul-Razzak and Ghan cloud droplet activation parameterization
 - Cloud microphysics: Morrison two-moment scheme
 - Radiation: Goddard SW + RRTM LW schemes

Evaluation – BB aerosols as CCN

ACA (above-cloud aerosols) – cloud mixing frequency

- Retrieved from CATS observations (aerosol features adjacent to cloud layer).
- Model overestimates mixing frequency over the remote region by about 15%

Cloud droplet number concentration (N_d)

- Retrieved from MODIS observations of liquid water path and effective radius.
- Model overestimates N_d over remote region

BB aerosol effects on stratocumulus

Liquid water path (LWP)

- Strong diurnal cycle; highest at
 6 UTC and lowest at 15 UTC
- P-case predicts higher LWP compared to C-case

• N_d

- No strong diurnal cycle
- P-case predicts about twice N_d
 of C-case

Cloud optical depth (COD)

- Diurnal cycles follow LWP
- Higher COD in P-case compared to C-case (20~30%)

BB aerosol effects on cloud fraction

Total effect of BB aerosols (0)

Enhances cloud fraction (CF)
 before noon, and reduces CF in afternoon (especially for the remote region)

Semi-direct effect (□)

 Enhance CF over the coast region in afternoon (consistent with the previous studies, e.g. Wilcox, 2012)

BB aerosol effects on radiation energy budget

	SEA domain	Coastal region	Remote region
Total effect	-8.05 (-20.0)	-6.88 (-18.0)	-8.93 (-21.6)
Microphysical effect	-7.01 (-18.6)	-8.28 (-21.7)	-6.12 (-16.5)
Direct + semi-direct effects	-1.04 (-1.4)	+1.40 (+3.7)	-2.81 (-5.1)

 Better agreement with CERES observations of SW_{TOA} ↑ (daytime)

P-case: 1.6 W/m² higher

C-case: 18.4 W/m² lower

- The microphysical effect of BB aerosols causes strong cooling
 - Daily mean: -7.01 W/m²
 - The cooling is mainly due to higher N_d (Twomey effect)

Conclusions

- In this study, we employ WRF-Chem model to study the impacts of BB aerosols on stratocumulus clouds over SEA during the fire season of 2014.
- Modeling results, in conjunction with satellite observations, suggest that BB aerosol microphysical effect (especially the Twomey effect) can cause strong cooling (-7.01 W/m²) over this region.
- The findings in our study may partially explain the underestimation of cloud radiative forcing over this region predicted by GCMs.

Biomass smoke from southern Africa can significantly enhance the brightness of stratocumulus over the southeastern Atlantic Ocean

Zheng Lu^a, Xiaohong Liu^{a,b,1}, Zhibo Zhang^{c,d}, Chun Zhao^e, Kerry Meyer^f, Chamara Rajapakshe^c, Chenglai Wu^{a,b}, Zhifeng Yang^{c,d}, and Jovce E. Penner^g

^aDepartment of Atmospheric Science, University of Wyoming, Laramie, WY 82071; ^bInternational Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; ^cPhysics Department, University of Maryland Baltimore County, Baltimore, MD

